metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[4-(dimethylamino)pyridinium [(μ_6 -5-carboxybenzene-1,2,4-tricarboxyato- $\kappa^{6}O^{1}:O^{1'}:O^{2}:O^{4}:O^{4'}:O^{5}$)diargentate(I)]]

Xiao-Fei Zhu, Yan-Hong Zhou, Li Guan and Hong Zhang*

Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: zhangh@nenu.edu.cn

Received 1 June 2009; accepted 21 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.018; wR factor = 0.046; data-to-parameter ratio = 11.8.

In the title compound, $\{(C_7H_{11}N_2)[Ag_2(C_{10}H_3O_8)]\}_n$, the polymeric anion consists of two Ag^I atoms and a Hbtc³⁻ ligand (H_4 btc = benzene-1,2,4,5-tetracarboxylic acid). Each Ag^I atom is coordinated by four O atoms from three different Hbtc³⁻ ligands. The two Ag^I atoms are bridged by two bidentate carboxylate groups into an Ag₂O₄ cyclic unit, with an Ag...Ag distance of 2.8189 (3) Å. In this way, the Ag atoms are connected by the Hbtc³⁻ ligands into an extended two-dimensional layer structure. A three-dimensional network is accomplished through O-H···O hydrogen bonds between the anionic layers. The cationic guest Hdmap⁺ [dmap = 4-(dimethylamino)pyridine] is trapped in the network and adheres to the layer by an N-H. O hydrogen bond.

Related literature

For general background to metal-organic frameworks with 1,2,4,5-benzenetetracarboxylate liganda, see: Cao et al. (2002); Hu et al. (2004); Li et al. (2003). For related complexes, see: Chen (2008); Sun et al. (2003); Zheng et al. (2002, 2003).

Experimental

Crystal data

 $(C_7H_{11}N_2)[Ag_2(C_{10}H_3O_8)]$ $\gamma = 103.260 \ (3)^{\circ}$ V = 884.65 (7) Å³ $M_r = 590.04$ Triclinic, $P\overline{1}$ Z = 2a = 9.7192 (3) Å Mo $K\alpha$ radiation b = 9.9936(5) Å $\mu = 2.27 \text{ mm}^{-1}$ c = 10.4968 (3) Å T = 293 K $\alpha = 113.304 (4)^{\circ}$ $0.24 \times 0.18 \times 0.14 \text{ mm}$ $\beta = 97.140(3)^{\circ}$

Data collection

Oxford Diffraction Gemini R Ultra diffractometer Absorption correction: multi-scan (CrvsAlis RED: Oxford Diffraction, 2006) $T_{\min} = 0.611, T_{\max} = 0.725$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.018$ 265 parameters $wR(F^2) = 0.046$ H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.35 \text{ e} \text{ Å}^-$ S = 1.06 $\Delta \rho_{\rm min} = -0.47$ e Å⁻³ 3124 reflections

Table 1 Selected bond lengths (Å).

Ag1-O1	2.5220 (15)	Ag2-O4	2.2091	(15)
Ag1-O3 ⁱ	2.1784 (15)	Ag2-O5 ⁱⁱⁱ	2.2224	(16)
Ag1-O3	2.7573 (19)	Ag2-O5 ^{iv}	2.873 ((2)
Ag1-O6 ⁱⁱ	2.1765 (15)	Ag2-O7 ^{iv}	2.4442	(15)
Symmetry codes:	(i) $-x + 1, -y + 1,$	-z + 2; (ii)	-x + 1, -y, -z + 1;	(iii)
x, y + 1, z + 1; (iv)	-x + 1, -y, -z + 2.			

7226 measured reflections 3124 independent reflections

 $R_{\rm int} = 0.012$

2808 reflections with $I > 2\sigma I$)

Table 2

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline N2 - H \cdots O7^{v} \\ O2 - H2 \cdots O8^{vi} \end{array}$	0.84	1.88	2.720 (2)	177
	0.82	1.73	2.541 (2)	173

Symmetry codes: (v) x - 1, y + 1, z; (vi) x - 1, y, z.

Data collection: CrvsAlis CCD (Oxford Diffraction, 2006): cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge financial support from the NSF of China (grant No. 20771023), the 863 Program (grant No. 2007 A A03z218) and the Analysis and Testing Foundation of Northeast Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2204).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.
- Chen, J. (2008). Acta Cryst. E64, m498-m499.
- Hu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112-m113.
- Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). *Inorg. Chem.* 42, 3119–3124.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, D. F., Cao, R., Sun, Y. Q., Bi, W. H., Li, X. J., Wang, Y. Q., Shi, Q. & Li, X. (2003). Inorg. Chem. 42, 7512–7518.
- Zheng, S. L., Tong, M. L., Chen, X. M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.
- Zheng, S. L., Zhang, J. P., Chen, X. M. & Ng, S. W. (2003). J. Solid State Chem. 172, 45–52.

supplementary materials

Acta Cryst. (2009). E65, m994-m995 [doi:10.1107/S1600536809028839]

Poly[4-(dimethylamino)pyridinium κ⁶O¹:O¹:O²:O⁴:O⁵)diargentate(I)]]

[(*µ*₆-5-carboxybenzene-1,2,4-tricarboxyato-

X.-F. Zhu, Y.-H. Zhou, L. Guan and H. Zhang

Comment

More efforts have been made to construct MOFs (metal organic frameworks) materials by using 1,2,4,5-benzenetetracarboxylic acid (H₄btc) as molecular building block, owing to its complexed coordination modes to metal ions and various dimensionalities (Cao *et al.*, 2002; Hu *et al.*, 2004; Li *et al.*, 2003). According to literature, the combination of H₄btc, as a polydentate ligand and silver(I) can produce various architectures, involving in $[Ag_2(pbi)_2(H_2btc)]_n$ [pbi = 2-(3-pyridyl)-1*H*-benzimidazole] (Chen, 2008), $[Ag(\mu_3-hmt)]_2[Ag(NH_3)_2]_2(btc).3H_2O$ (hmt = hexamethylenetetramine) (Zheng *et al.*, 2002), $[Ag_8(\mu_3-hmt)_2(\mu_4-hmt)_2(\mu-btc)_2(\mu-H_2O)_3].18H_2O$ (Zheng *et al.*, 2003), and $[Ag(bipy)][H_2btc]_{0.5}.H_2O$ (Sun *et al.*, 2003). Herein, the title complex, [Hdmap][Ag_2(Hbtc)] (dmap = 4-dimethylaminopyridine), with a layer structure is reported.

The structure of the title compound contains two crystallographically independent Ag^{I} atoms, one (Hbtc)³⁻ ligand and one (Hdmap)⁺ cantion. Each Ag^{I} atom is coordinated by four carboxylate O atoms from three different Hbtc ligands (Fig. 1), with three close bond distances [average Ag1-O = 2.2923 (15) and Ag2-O = 2.2919 (15) Å] and one long bond distance [Ag1-O = 2.7573 (19) and Ag2-O = 2.873 (2) Å] (Table 1). It is worth noting that two adjacent Ag1 and Ag2 atoms are bridged by two bidentate carboxylate groups into an Ag_2O_4 cyclic unit, with an Ag. Ag distance of 2.8189 (3) Å. The Hbtc ligand connects six Ag atoms, leading to a two-dimensional anionic layer (Fig. 2). The interlayer O-H…O hydrogen bonds hold adjacent layers together to bring out a supramolecular network. The cationic guest (Hdmap)⁺ is trapped in the network and adhere to the layer by an N-H…O hydrogen bond (Table 2).

Experimental

A mixture of pyromelitic acid anhydride (0.218 g, 0.1 mmol) in distilled water (10 ml) was stirred at 333 K for 1 h until to get clear solution and then a DMF solution (2 ml) of AgNO₃ (0.169 g, 0.1 mmol) was added on stirring for 1 h under ambient condition. The resulting solution was allowed to stand in air at room temperature for 3 d. Colorless crystals were collected in 77.8% yield based on AgNO₃.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl), N—H = 0.84 and O—H = 0.82 Å, and with $U_{iso}(H) = 1.2$ (or 1.5 for methyl and hydroxyl) $U_{eq}(C, N, O)$.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 1 - z; (iii) x, 1 + y, 1 + z; (iv) 1 - x, -y, 2 - z.]

Fig. 2. A view of the two-dimensional layer in the title compound. H atoms are omitted for clarity.

Poly[4-(dimethylamino)pyridinium [(μ_6 -5-carboxybenzene-1,2,4-tricarboxylato- $\kappa^6 O^1: O^1: O^2: O^4: O^4: O^5$)diargentate(I)]]

Crystal data

$(C_7H_{11}N_2)[Ag_2(C_{10}H_3O_8)]$	Z = 2
$M_r = 590.04$	$F_{000} = 576$
Triclinic, PT	$D_{\rm x} = 2.215 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.7192 (3) Å	Cell parameters from 3901 reflections
b = 9.9936(5) Å	$\theta = 4.4 - 25.0^{\circ}$
c = 10.4968 (3) Å	$\mu = 2.27 \text{ mm}^{-1}$
$\alpha = 113.304 \ (4)^{\circ}$	T = 293 K
$\beta = 97.140 \ (3)^{\circ}$	Block, colorless
$\gamma = 103.260 \ (3)^{\circ}$	$0.24 \times 0.18 \times 0.14 \text{ mm}$
$V = 884.65 (7) \text{ Å}^3$	

Data collection

Oxford Diffraction Gemini R Ultra diffractometer	3124 independent reflections
Radiation source: fine-focus sealed tube	2808 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.012$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293 K	$\theta_{\min} = 4.4^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)	$k = -11 \rightarrow 11$
$T_{\min} = 0.611, \ T_{\max} = 0.725$	$l = -12 \rightarrow 12$
7226 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.018$	$w = 1/[\sigma^2(F_o^2) + (0.0251P)^2 + 0.4969P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.046$	$(\Delta/\sigma)_{\rm max} = 0.003$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
3124 reflections	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
265 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0157 (6)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.421397 (19)	0.410977 (18)	0.802682 (17)	0.02690 (8)
Ag2	0.421385 (19)	0.385653 (19)	1.290598 (17)	0.02889 (9)
01	0.22857 (16)	0.20334 (17)	0.81649 (18)	0.0277 (4)
O2	0.10698 (15)	-0.04467 (17)	0.71974 (19)	0.0329 (4)
H2	0.0364	-0.0126	0.7220	0.049*
O3	0.57621 (18)	0.37804 (17)	1.02125 (17)	0.0326 (4)
O4	0.4252 (2)	0.21751 (18)	1.07819 (17)	0.0344 (4)
O5	0.41174 (19)	-0.39642 (18)	0.45762 (18)	0.0357 (4)
O6	0.5636 (2)	-0.23946 (18)	0.39821 (17)	0.0341 (4)
O7	0.75751 (16)	-0.21312 (17)	0.65497 (17)	0.0251 (3)
08	0.87465 (16)	0.03113 (17)	0.7214 (2)	0.0336 (4)
C1	0.2265 (2)	0.0702 (2)	0.7685 (2)	0.0178 (4)
C2	0.4977 (2)	0.2487 (2)	0.9985 (2)	0.0173 (4)
C3	0.4930 (2)	0.1181 (2)	0.8600(2)	0.0160 (4)
C4	0.3628 (2)	-0.0996 (2)	0.6355 (2)	0.0177 (4)
H4	0.2755	-0.1617	0.5684	0.021*
C5	0.3627 (2)	0.0251 (2)	0.7570 (2)	0.0160 (4)
C6	0.6223 (2)	-0.0377 (2)	0.7128 (2)	0.0157 (4)
C7	0.4913 (2)	-0.1332 (2)	0.6121 (2)	0.0153 (4)
C8	0.6218 (2)	0.0862 (2)	0.8348 (2)	0.0185 (4)
H8	0.7093	0.1493	0.9012	0.022*
C9	0.4888 (2)	-0.2673 (2)	0.4775 (2)	0.0168 (4)
C10	0.7617 (2)	-0.0765 (2)	0.6939 (2)	0.0192 (4)
N1	0.0720 (2)	0.4030 (2)	0.1392 (2)	0.0333 (5)
N2	-0.1309 (2)	0.6318 (3)	0.4369 (2)	0.0378 (5)
Н	-0.1683	0.6777	0.5021	0.045*
C11	0.0048 (2)	0.4765 (3)	0.2354 (2)	0.0271 (5)
C12	-0.0362 (3)	0.7091 (3)	0.3890 (3)	0.0354 (6)

supplementary materials

-0.0172	0.8144	0.4240	0.042*
-0.1624 (3)	0.4795 (3)	0.3866 (3)	0.0375 (6)
-0.2296	0.4279	0.4204	0.045*
-0.0985 (3)	0.3988 (3)	0.2872 (3)	0.0343 (6)
-0.1223	0.2931	0.2533	0.041*
0.0325 (3)	0.6369 (3)	0.2906 (3)	0.0333 (6)
0.0981	0.6930	0.2592	0.040*
0.0426 (3)	0.2378 (3)	0.0780 (3)	0.0407 (6)
-0.0540	0.1883	0.0172	0.061*
0.0505	0.2065	0.1535	0.061*
0.1119	0.2095	0.0231	0.061*
0.1797 (3)	0.4867 (4)	0.0902 (3)	0.0423 (7)
0.2588	0.5591	0.1700	0.063*
0.1351	0.5400	0.0473	0.063*
0.2160	0.4161	0.0210	0.063*
	$\begin{array}{c} -0.0172 \\ -0.1624 (3) \\ -0.2296 \\ -0.0985 (3) \\ -0.1223 \\ 0.0325 (3) \\ 0.0981 \\ 0.0426 (3) \\ -0.0540 \\ 0.0505 \\ 0.1119 \\ 0.1797 (3) \\ 0.2588 \\ 0.1351 \\ 0.2160 \end{array}$	-0.0172 0.8144 -0.1624 (3) 0.4795 (3) -0.2296 0.4279 -0.0985 (3) 0.3988 (3) -0.1223 0.2931 0.0325 (3) 0.6369 (3) 0.0981 0.6930 0.0426 (3) 0.2378 (3) -0.0540 0.1883 0.0505 0.2065 0.1119 0.2095 0.1797 (3) 0.4867 (4) 0.2588 0.5591 0.1351 0.5400 0.2160 0.4161	-0.01720.81440.4240-0.1624 (3)0.4795 (3)0.3866 (3)-0.22960.42790.4204-0.0985 (3)0.3988 (3)0.2872 (3)-0.12230.29310.25330.0325 (3)0.6369 (3)0.2906 (3)0.09810.69300.25920.0426 (3)0.2378 (3)0.0780 (3)-0.05400.18830.01720.05050.20650.15350.11190.20950.02310.1797 (3)0.4867 (4)0.0902 (3)0.25880.55910.17000.13510.54000.04730.21600.41610.0210

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.03846 (13)	0.01606 (11)	0.01917 (11)	0.00464 (7)	0.01347 (8)	0.00093 (7)
Ag2	0.04268 (13)	0.01682 (11)	0.02185 (11)	0.00567 (8)	0.01695 (8)	0.00245 (8)
01	0.0209 (8)	0.0163 (8)	0.0436 (10)	0.0084 (6)	0.0142 (7)	0.0076 (7)
O2	0.0123 (7)	0.0184 (8)	0.0581 (11)	0.0053 (6)	0.0090 (7)	0.0065 (8)
O3	0.0409 (10)	0.0154 (8)	0.0288 (9)	0.0006 (7)	0.0191 (7)	-0.0016 (7)
O4	0.0535 (11)	0.0211 (8)	0.0240 (8)	0.0075 (7)	0.0231 (8)	0.0037 (7)
O5	0.0431 (10)	0.0148 (8)	0.0356 (9)	-0.0001 (7)	0.0255 (8)	-0.0019 (7)
O6	0.0553 (11)	0.0201 (8)	0.0233 (8)	0.0081 (7)	0.0245 (8)	0.0034 (7)
O7	0.0233 (8)	0.0173 (8)	0.0361 (9)	0.0103 (6)	0.0155 (7)	0.0084 (7)
08	0.0143 (8)	0.0191 (8)	0.0614 (12)	0.0046 (6)	0.0133 (7)	0.0108 (8)
C1	0.0168 (10)	0.0168 (11)	0.0191 (10)	0.0056 (8)	0.0084 (8)	0.0058 (9)
C2	0.0181 (10)	0.0166 (10)	0.0149 (9)	0.0087 (8)	0.0047 (8)	0.0027 (8)
C3	0.0185 (10)	0.0132 (10)	0.0154 (10)	0.0056 (8)	0.0061 (8)	0.0045 (8)
C4	0.0146 (10)	0.0155 (10)	0.0173 (10)	0.0036 (8)	0.0026 (8)	0.0026 (8)
C5	0.0151 (10)	0.0132 (10)	0.0199 (10)	0.0049 (7)	0.0079 (8)	0.0061 (8)
C6	0.0144 (10)	0.0132 (10)	0.0185 (10)	0.0047 (7)	0.0067 (8)	0.0050 (8)
C7	0.0173 (10)	0.0130 (9)	0.0160 (9)	0.0063 (8)	0.0073 (8)	0.0049 (8)
C8	0.0155 (10)	0.0143 (10)	0.0187 (10)	0.0028 (8)	0.0031 (8)	0.0016 (8)
C9	0.0168 (10)	0.0164 (10)	0.0150 (10)	0.0071 (8)	0.0035 (8)	0.0036 (8)
C10	0.0181 (10)	0.0173 (11)	0.0199 (10)	0.0063 (8)	0.0074 (8)	0.0045 (9)
N1	0.0372 (11)	0.0354 (11)	0.0322 (11)	0.0154 (9)	0.0194 (9)	0.0141 (9)
N2	0.0413 (12)	0.0458 (13)	0.0318 (11)	0.0272 (10)	0.0174 (10)	0.0123 (10)
C11	0.0270 (12)	0.0322 (13)	0.0235 (11)	0.0108 (10)	0.0076 (9)	0.0122 (10)
C12	0.0420 (14)	0.0289 (13)	0.0338 (13)	0.0143 (11)	0.0061 (11)	0.0113 (11)
C13	0.0364 (14)	0.0422 (15)	0.0414 (14)	0.0136 (11)	0.0216 (12)	0.0213 (13)
C14	0.0383 (14)	0.0280 (13)	0.0401 (14)	0.0111 (11)	0.0188 (12)	0.0150 (12)
C15	0.0369 (13)	0.0308 (13)	0.0344 (13)	0.0097 (10)	0.0128 (11)	0.0156 (11)
C16	0.0437 (15)	0.0410 (16)	0.0369 (14)	0.0218 (12)	0.0152 (12)	0.0102 (13)
C17	0.0371 (14)	0.0576 (18)	0.0399 (15)	0.0176 (13)	0.0225 (12)	0.0236 (14)

Geometric parameters (Å, °)

Ag1—O1	2.5220 (15)	C6—C8	1.387 (3)
Ag1—O3 ⁱ	2.1784 (15)	C6—C7	1.400 (3)
Ag1—O3	2.7573 (19)	C6—C10	1.507 (3)
Ag1—O6 ⁱⁱ	2.1765 (15)	С7—С9	1.507 (3)
Ag2—O4	2.2091 (15)	С8—Н8	0.9300
Ag2—O5 ⁱⁱⁱ	2.2224 (16)	N1—C11	1.336 (3)
Ag2—O5 ^{iv}	2.873 (2)	N1—C16	1.455 (3)
Ag2—O7 ^{iv}	2.4442 (15)	N1—C17	1.460 (3)
Ag1—Ag2 ⁱ	2.8189 (3)	N2—C12	1.339 (3)
O1—C1	1.216 (3)	N2—C13	1.341 (3)
O2—C1	1.306 (2)	N2—H	0.84
O2—H2	0.82	C11—C15	1.417 (3)
O3—C2	1.252 (3)	C11—C14	1.420 (3)
O4—C2	1.244 (3)	C12—C15	1.355 (3)
О5—С9	1.255 (3)	C12—H12	0.9300
О6—С9	1.240 (3)	C13—C14	1.361 (3)
O7—C10	1.249 (3)	С13—Н13	0.9300
O8—C10	1.257 (2)	C14—H14	0.9300
C1—C5	1.496 (3)	C15—H15	0.9300
C2—C3	1.508 (3)	C16—H16A	0.9600
C3—C8	1.392 (3)	C16—H16B	0.9600
C3—C5	1.401 (3)	C16—H16C	0.9600
C4—C5	1.387 (3)	С17—Н17А	0.9600
C4—C7	1.392 (3)	С17—Н17В	0.9600
C4—H4	0.9300	С17—Н17С	0.9600
O6 ⁱⁱ —Ag1—O3 ⁱ	165.22 (6)	C4—C7—C6	118.95 (18)
O6 ⁱⁱ —Ag1—O1	88.08 (6)	C4—C7—C9	120.01 (17)
O3 ⁱ —Ag1—O1	104.84 (6)	С6—С7—С9	120.99 (17)
O6 ⁱⁱ —Ag1—Ag2 ⁱ	82.64 (4)	C6—C8—C3	121.33 (18)
O3 ⁱ —Ag1—Ag2 ⁱ	83.04 (4)	С6—С8—Н8	119.3
O1—Ag1—Ag2 ⁱ	162.98 (4)	С3—С8—Н8	119.3
O3—Ag1—O1	80.23 (5)	O6—C9—O5	126.56 (19)
O3—Ag1—O3 ⁱ	82.06 (6)	O6—C9—C7	117.07 (18)
O3—Ag1—O6 ⁱⁱ	107.63 (5)	O5—C9—C7	116.36 (17)
O3—Ag1—Ag2 ⁱ	116.16 (4)	O7—C10—O8	124.57 (19)
O4—Ag2—O5 ⁱⁱⁱ	158.69 (7)	O7—C10—C6	117.63 (17)
O4—Ag2—O7 ^{iv}	97.68 (6)	O8—C10—C6	117.78 (18)
O5 ⁱⁱⁱ —Ag2—O7 ^{iv}	97.08 (5)	C11—N1—C16	122.5 (2)
O4—Ag2—Ag1 ⁱ	81.08 (4)	C11—N1—C17	120.8 (2)
O5 ⁱⁱⁱ —Ag2—Ag1 ⁱ	81.40 (4)	C16—N1—C17	116.8 (2)
O7 ^{iv} —Ag2—Ag1 ⁱ	168.58 (4)	C12—N2—C13	120.7 (2)

supplementary materials

O5 ^{iv} —Ag2—O4	119.23 (5)	С12—N2—Н	120.9
O5 ^{iv} —Ag2—O5 ⁱⁱⁱ	78.86 (6)	С13—N2—Н	118.3
O5 ^{iv} —Ag2—O7 ^{iv}	78.31 (5)	N1—C11—C15	121.4 (2)
O5 ^{iv} —Ag2—Ag1 ⁱ	112.29 (4)	N1—C11—C14	122.1 (2)
C1—O1—Ag1	123.41 (13)	C15—C11—C14	116.4 (2)
C1—O2—H2	109.5	N2—C12—C15	121.3 (2)
C2—O3—Ag1 ⁱ	123.07 (13)	N2—C12—H12	119.3
C2—O4—Ag2	124.47 (14)	C15—C12—H12	119.3
C9—O5—Ag2 ^v	123.12 (13)	N2-C13-C14	121.5 (2)
C9—O6—Ag1 ⁱⁱ	124.62 (14)	N2-C13-H13	119.3
C10—O7—Ag2 ^{iv}	121.06 (12)	C14—C13—H13	119.3
O1—C1—O2	123.50 (18)	C13—C14—C11	119.7 (2)
O1—C1—C5	122.02 (17)	C13—C14—H14	120.1
O2—C1—C5	114.46 (17)	C11—C14—H14	120.1
O4—C2—O3	126.86 (19)	C12—C15—C11	120.3 (2)
O4—C2—C3	117.34 (18)	C12—C15—H15	119.8
O3—C2—C3	115.79 (17)	C11—C15—H15	119.8
C8—C3—C5	118.74 (18)	N1—C16—H16A	109.5
C8—C3—C2	119.06 (17)	N1—C16—H16B	109.5
C5—C3—C2	122.18 (17)	H16A—C16—H16B	109.5
C5—C4—C7	121.14 (18)	N1—C16—H16C	109.5
С5—С4—Н4	119.4	H16A—C16—H16C	109.5
С7—С4—Н4	119.4	H16B—C16—H16C	109.5
C4—C5—C3	119.97 (18)	N1—C17—H17A	109.5
C4—C5—C1	119.38 (17)	N1—C17—H17B	109.5
C3—C5—C1	120.24 (17)	H17A—C17—H17B	109.5
C8—C6—C7	119.81 (18)	N1—C17—H17C	109.5
C8—C6—C10	120.10 (17)	Н17А—С17—Н17С	109.5
C7—C6—C10	119.93 (17)	H17B—C17—H17C	109.5
06 ⁱⁱ —Ag1—O1—C1	31.61 (18)	С10—С6—С7—С9	-5.6 (3)
O3 ⁱ —Ag1—O1—C1	-155.65 (17)	C7—C6—C8—C3	0.1 (3)
Ag2 ⁱ —Ag1—O1—C1	88.4 (2)	C10—C6—C8—C3	-175.26 (19)
O5 ⁱⁱⁱ —Ag2—O4—C2	43.7 (3)	C5—C3—C8—C6	-2.1 (3)
O7 ^{iv} —Ag2—O4—C2	177.18 (18)	C2—C3—C8—C6	176.43 (19)
Ag1 ⁱ —Ag2—O4—C2	8.66 (17)	Ag1 ⁱⁱ —O6—C9—O5	1.1 (3)
Ag1—O1—C1—O2	-150.04 (16)	Ag1 ⁱⁱ —O6—C9—C7	-179.62 (13)
Ag1—O1—C1—C5	28.3 (3)	Ag2 ^v —O5—C9—O6	11.0 (3)
Ag2—O4—C2—O3	-2.3 (3)	Ag2 ^v —O5—C9—C7	-168.32 (13)
Ag2—O4—C2—C3	177.08 (13)	C4—C7—C9—O6	120.2 (2)
Ag1 ⁱ	-9.4 (3)	C6—C7—C9—O6	-57.5 (3)
Ag1 ⁱ —O3—C2—C3	171.21 (13)	C4—C7—C9—O5	-60.4 (3)
O4—C2—C3—C8	-119.5 (2)	C6—C7—C9—O5	121.9 (2)
03—C2—C3—C8	60.0 (3)	Ag2 ^{iv} —O7—C10—O8	151.16 (17)
O4—C2—C3—C5	59.0 (3)	Ag2 ^{iv} —O7—C10—C6	-27.2 (2)

O3—C2—C3—C5	-121.6 (2)	C8—C6—C10—O7	132.8 (2)
C7—C4—C5—C3	-1.1 (3)	C7—C6—C10—O7	-42.6 (3)
C7—C4—C5—C1	171.50 (18)	C8—C6—C10—O8	-45.6 (3)
C8—C3—C5—C4	2.6 (3)	C7—C6—C10—O8	139.0 (2)
C2—C3—C5—C4	-175.89 (19)	C16—N1—C11—C15	-178.3 (2)
C8—C3—C5—C1	-170.00 (18)	C17—N1—C11—C15	1.6 (3)
C2—C3—C5—C1	11.5 (3)	C16—N1—C11—C14	1.2 (4)
O1—C1—C5—C4	-138.5 (2)	C17—N1—C11—C14	-178.8 (2)
O2—C1—C5—C4	39.9 (3)	C13—N2—C12—C15	-1.2 (4)
O1—C1—C5—C3	34.1 (3)	C12—N2—C13—C14	0.9 (4)
O2—C1—C5—C3	-147.48 (19)	N2-C13-C14-C11	0.3 (4)
C5—C4—C7—C6	-0.8 (3)	N1-C11-C14-C13	179.2 (2)
C5—C4—C7—C9	-178.56 (19)	C15-C11-C14-C13	-1.2 (3)
C8—C6—C7—C4	1.3 (3)	N2-C12-C15-C11	0.2 (4)
C10—C6—C7—C4	176.73 (18)	N1-C11-C15-C12	-179.5 (2)
C8—C6—C7—C9	179.04 (19)	C14—C11—C15—C12	0.9 (3)
Symmetry codes: (i) – <i>x</i> +1, – <i>y</i> +1, – <i>z</i> +2;	(ii) - <i>x</i> +1, - <i>y</i> , - <i>z</i> +1; (iii) <i>x</i> ,	y+1, z+1; (iv) $-x+1, -y, -z+2;$ (v) $x, y-1;$, <i>z</i> –1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H···O7 ^{vi}	0.84	1.88	2.720 (2)	177
O2—H2···O8 ^{vii}	0.82	1.73	2.541 (2)	173
Symmetry address (x_i) $x_i = 1$ $x_i + 1$ x_i (x_i) $x_i = 1$ $x_i = 1$				

Symmetry codes: (vi) *x*-1, *y*+1, *z*; (vii) *x*-1, *y*, *z*.

Fig. 1

